Daten exportieren

 

Forschungsprojekt ::
Causes and Consequences of Errors in Dual-Tasking

Projektbeschreibung

Efficient task performance requires a performance monitoring system that detects errors and initiates control adjustments in order to prevent further errors. These mechanisms are even more important when multiple subtasks are executed simultaneously or in rapid succession. Under these conditions, interference between subtasks can emerge which makes dual-tasking performance particularly error-prone. The present project investigates the relationship between errors and cognitive control in dual-tasking by addressing three research questions: First, we ask how errors induce short-term control adjustments that prevent further errors and optimize performance. Second, we ask how performance monitoring and control-adjustments in one subtask interfere with processing in another subtask, thus leading to error propagation. Finally, we ask how failures of preparation cause errors and how preparation is adjusted in response to errors to prevent further errors. To achieve this, we analyze behavioral data and event-related potentials in the Psychological Refractory Period paradigm. Our studies aim to improve our understanding of how errors emerge and how cognitive control operates in dual-tasking. Based on our results, we hope to derive recommendations how learning from errors can be optimized in applied dual-tasking scenarios.

Angaben zum Forschungsprojekt

Beginn des Projekts:2015
Ende des Projekts:2018
Projektstatus:abgeschlossen
Projektleitung:Steinhauser, Prof. Dr. Marco
Lehrstuhl/Institution:
Finanzierung des Projekts:Begutachtete Drittmittel
Geldgeber:DFG
Themengebiete:C Philosophie; Psychologie > CP Allgemeine Psychologie
Projekttyp:Grundlagenforschung
Projekt-ID:2208

Publikationen

Liste der Veröffentlichungen auf dem Publikationserver KU.edoc der Katholischen Universität Eichstätt-Ingolstadt
Eingestellt am: 29. Jul 2016 08:49
Letzte Änderung: 07. Jan 2019 18:25
URL zu dieser Anzeige: https://fordoc.ku.de/id/eprint/2208/
Analytics