Daten exportieren

 

Forschungsprojekt ::
Investigating the Role of AI Communication Design in Human-AI Collaboration

Projektbeschreibung

As large language models (LLM) based on artificial intelligence (AI) become central to knowledge workers' task completion, it is important for research and practice to gain insights into designing effective human-AI collaboration systems (Sowa et al., 2021). Hence, we explore AI communication style as one important feature of human-AI collaboration, where research still lacks comprehensive knowledge (Bankins et al., 2024). This study investigates whether and how an AI’s communication style can improve human-AI collaboration. The focus is on enhancing both employee well-being and performance outcomes, including the quality and speed of work. This research builds on the computers are social actors’-paradigm (Nass & Moon, 2000), extant human-chatbot communication literature (van Pinxteren et al., 2020) as well as on past studies showing that communication style positively affects human-to-human collaboration (Kluger & Itzchakov, 2022). We seek to address current research gaps in understanding how AI systems should interact with employees to increase collaboration quality, service outcomes, and employee well-being. In so doing, we focus on a promising communication technique which has shown to improve collaboration in human-to-human and human-to-chatbot settings: active listening (Ally et al., 2005; Kluger & Itzchakov, 2022; Xiao et al., 2020).

Angaben zum Forschungsprojekt

Beginn des Projekts:1. August 2025
Ende des Projekts:31. Dezember 2026
Projektstatus:laufend
Projektleitung:Blaurock, Dr. Marah
Lehrstuhl/Institution:
Finanzierung des Projekts:Intern/PROFOR
Themengebiete:Q Wirtschaftswissenschaften > QP Allgemeine Betriebswirtschaftslehre
S Mathematik; Informatik > ST Informatik - Veröffentlichungen zu Sachgebieten > Künstliche Intelligenz
Projekttyp:Grundlagenforschung
Projekt-ID:3883
Eingestellt am: 12. Sep 2025 08:24
Letzte Änderung: 12. Sep 2025 08:24
URL zu dieser Anzeige: https://fordoc.ku.de/id/eprint/3883/
Analytics